

 Using Cryptography in PowerBuilder 10.0

 PowerBuilder Engineering, Information Technology and Solutions Group

Table of Contents

Overview .. 3

Architecture of the PBCrypto Non-Visual Object .. 3

Mapping JCE Exceptions into PowerBuilder Exceptions... 4

 Obtaining an Instance of the PBCrypto Proxy Object .. 4

PBCrypto Proxy API .. 5

CreateRSAKeyPair ... 5

DecryptCipherTextUsingBlockCipher ... 5

DecryptCipher TextUsingPBE ... 6

DecryptSecretKeyUsingRSAPrivateKey.. 7

DumpBCProviderList ... 8

EncryptPlainTextUsingBlockCipher .. 9

EncryptPlainTextUsingPBE ... 9

EncryptSecretKeyUsingRSAPublicKey ... 9

GenerateDigitalSignature.. 10

GenerateMessageAuthenticationCode.. 10

GenerateMessageDigest.. 11

GenerateSecretKey ... 11

VerifySignature .. 12

Conclusion.. 13

 2

Overview
PowerBuilder® continues to excel as a feature-rich development environment for building data-aware
applications. The venerable DataWindow®, which has expanded its capabilities in every release of the
product, now includes rich XML generation and manipulation routines.

Internet development is a risky proposition; around the corner from every router, there could be someone
tapping into the wire and intercepting TCP/IP packets in an attempt to gain access to someone else’s data.
Security is an increasingly important aspect of application development, one that developers cannot ignore.
Prior to version 10, the PowerBuilder platform lacked a strongly integrated cryptography solution. A few
articles were available that demonstrated how to invoke calls in external DLLs, but no part of the product
itself truly allowed the PowerBuilder developer to invoke cryptographic operations without leaving
PowerScript®.

PowerBuilder 10 introduces a new cryptographic object, the PBCrypto proxy object. This proxy object
exposes a wide array of cryptographic operations suitable for use inside PowerBuilder objects. The
PowerBuilder developer now has easy access to the entire gamut of cryptographic operations, from digital
signatures to message digests and powerful symmetric encryption algorithms. The purpose of this paper is to
educate the developer on what algorithms are available, explain some of the design decisions behind the
architecture, and show what extension points exist for this exciting new PowerBuilder functionality.

This paper does not aim to explain the proper use of cryptographic functions or the way they work. A
coupon included with each license of PowerBuilder 10 offers a discount toward the purchase of a book that
covers these subjects: Java Cryptography Extensions: Practical Guide for Programmers by Jason Weiss
(ISBN: 0-12-742751-1).

The PBCrypto proxy object is actually a veneer laid over the Java Cryptography Extensions (JCE) that
builds on the growing Java integration offered by the PowerBuilder IDE. There are many benefits to this
architecture, especially the ability it gives developers to plug in cryptographic implementations from a wide
array of vendors and make use of a vast amount of documentation on Java’s cryptography platform.

It is important to realize that although the PBCrypto proxy object included in PowerBuilder 10 has
its roots in Java and the JCE, it is possible for the PowerBuilder developer to use the cryptographic
algorithms without having to learn Java or the JCE.

Architecture of the PBCrypto Non-Visual Object
Cryptography operations rarely result in output that consists entirely of printable characters. One of the first
obstacles in performing cryptography with PowerBuilder is that the PowerScript language does not offer a
true byte data type. To overcome this problem, nearly all of the cryptographic operations declared in the
PBCrypto proxy rely on Base64-encoded arguments and return Base64-encoded results. Base64 encoding
is defined in an RFC and effectively turns 8-bit binary data into 6-bit printable characters.

The PBCrypto proxy and the n_cst_cryptography non-visual object that knows how to create an
instance of the proxy object reside in the library named pbcryptoclient100.pbd, which must be in the
PowerBuilder library list in addition to the pbejbclient100.pbd. Both libraries should be located in the
.\Program Files\Sybase\Shared\PowerBuilder directory. (The pbcryptoclient100.pbd is installed in Program
Files\Sybase\PowerBuilder 10.0\Cryptograph.) Additionally, the solution relies on three Java archive (.jar)
files that must be present in the Java CLASSPATH and accessible to PowerBuilder. The three libraries are:

• Java Cryptography Extensions library found in jce.jar, obtainable from the JDK installation (JDK
1.4 or later)

• A JCE provider, such one available from Bouncy Castle at http://bouncycastle.org, bcprov-jdk14-
1xx.jar, where xx represents the version number

• The Java/PowerBuilder veneer library, pbcrypto-1_0.jar

 3

The last library, pbcrypto-1_0.jar, is the entry point into the Java environment from the PowerBuilder
environment. In fact, the PBCrypto proxy was generated from one of the Java classes inside the pbcrypto-
1_0.jar file.

Mapping JCE Exceptions into PowerBuilder Exceptions

To keep the design simple, all of the JCE exceptions have been reduced to a single PowerBuilder exception
that the developer must catch. That exception is the NoSuchAlgorithmException. The inherent plug-
in architecture of the JCE makes it possible to request a cryptographic algorithm by name, and if the
installed provider’s base does not offer an algorithm with that name, the NoSuchAlgorithmException
is thrown.

Although it would have been possible to cascade each of the JCE exceptions into the PowerBuilder
environment, that would have required developers to learn more about the intrinsic JCE operations. Future
versions of this cryptographic library might cascade more exceptions back to the PowerBuilder developer,
depending on developer feedback to product management.

Obtaining an Instance of the PBCrypto Proxy Object

The PBCrypto proxy is accessible only through the n_cst_cryptography non-visual object. The
n_cst_cryptography NVO declares a single method modeled after a Singleton design pattern (though
the PowerBuilder environment makes no guarantee that there will only be a single instance of the NVO; the
NVO is marked with AutoInstantiate set to true). Whenever the developer needs to call a cryptographic
operation, the getInstance() method is invoked on n_cst_cryptography, like this:

n_cst_cryptography lnv_crypto
PBCrypto pbcrypto

TRY
 IF lnv_crypto.of_getInstance(pbcrypto) THEN
 //
 // Do your crypto calls here
 //
 END IF
CATCH (NoSuchAlgorithmException nsae)
 MessageBox("Alert", nsae.getMessage())
END TRY

Developers are encouraged to use the preceding code example as a template in their applications. One of the
primary objectives in engineering a PowerBuilder cryptography solution was simplicity for the
PowerBuilder developer. As demonstrated in this code example, within a single TRY…CATCH block with a
single method invocation, it is possible to obtain an instance of a PBCrypto proxy object and begin
invoking cryptographic operations.

 4

PBCrypto Proxy API
The PBCrypto proxy wraps 13 different cryptographic methods declared inside of the pbcrypto-1_0.jar
library. This section discusses each method in detail, points to the window inside the demo application that
shows the method being invoked, and references the chapter or section of the book Java Cryptography
Extensions: Practical Guide for Programmers where developers can learn more about the algorithm and its
use. The methods are presented alphabetically, as documented by the PowerBuilder Object Browser.

CreateRSAKeyPair

 creatersakeypair () returns any
throws nosuchalgorithmexception

RSA Key Pairs are typically used in digital signature operations or asymmetric encryption operations where
the amount of plaintext is extremely small—for example, encrypting a secret key. Asymmetric encryption is
discussed throughout Chapter 3, and digital signatures are discussed in Chapter 4, Sections 4.4 and 4.5.

The sample code provided with the PBCrypto solution demonstrating this method can be found in the
w_digital_signature.cb_create.clicked() method. The following example uses this code:

n_cst_cryptography lnv_crypto
PBCrypto pbcrypto
String ls_keys[2]

TRY
 IF lnv_crypto.of_getInstance(pbcrypto) THEN

 ls_keys = pbcrypto.createRsaKeyPair()
 mle_public.text = ls_keys[1]
 mle_private.text = ls_keys[2]

 END IF
CATCH (NoSuchAlgorithmException nsae)
 MessageBox("Alert", nsae.getMessage())
END TRY

It is important to remember that cryptography operations rarely result in printable characters, and that the
result from the createRsaKeyPair() method is automatically Base64 encoded. Creating RSA key pairs
is inherently time consuming, and depending upon the speed of your machine, the generation could take as
much as 15 seconds. Because of this slow generation speed, it is advisable to display some type of feedback
to the user.

Note: The public key is always the first entry in the array, and the private key is always the second entry in
the array.

DecryptCipherTextUsingBlockCipher

 decryptciphertextusingblockcipher (string algorithm, string secretKey, string cipherText) returns string
 throws nosuchalgorithmexception

Symmetric block ciphers include encryption algorithms like the Advanced Encryption Standard (AES), the
replacement for the aging DES from NIST. Symmetric ciphers are discussed throughout Chapter 2. The first
argument is the name of the cipher algorithm that should be used—for example, “AES” or “DES” or
“Blowfish” or any other cipher algorithm installed and available to the JCE. The second argument is the
Base64-encoded secret key used in the original encryption operation, and the third argument is the cipher
text, Base64 encoded.

 5

For complete details on what algorithms are available for use in the first argument, review Chapter 1,
Sections 1.4 through 1.6.

The sample code provided with the PBCrypto solution demonstrating this method can be found in the
w_symmetric_encryption.cb_decrypt.clicked() method. The following example uses this
code:

n_cst_cryptography lnv_crypto
PBCrypto pbcrypto

TRY

IF lnv_crypto.of_getInstance(pbcrypto) AND
(Len(sle_encrypted.text) > 0) THEN

 sle_decrypted.text =
pbcrypto.decryptCipherTextUsingBlockCipher("AES",

sle_secretKey.text,
sle_encrypted.text)

 ELSE
 MessageBox("Alert", "You must encrypt a phrase first!")
 END IF
CATCH (NoSuchAlgorithmException nsae)
 MessageBox("Alert", nsae.getMessage())
END TRY

Both the secret key and the cipher text (encrypted text) are expected to be Base64 encoded when they are
passed. Passing unencoded values will result in a bogus decryption. Plain text is returned from the method,
and it is not Base64 encoded.

It is important to check that the arguments to the method are not null and do not contain the empty string.

DecryptCipherTextUsingPBE

 decryptciphertextusingpbe (string algorithm, long salt[], long iters, character passphrase[], string cipherText) returns string
 throws nosuchalgorithmexception

PBE stands for Password Based Encryption. Unlike other symmetric block ciphers where a secret key is
system generated using a cryptographically secure pseudorandom number generator, this method relies on
having someone enter a passphrase/password. The inherent risk here is that the password might not a strong
combination of letters, numbers, and non-dictionary words.

PBE is discussed in Chapter 2, Section 2.8. The first argument is the name of the algorithm, the second is a
random set of salt values to prime the cipher algorithm, the third is the number of iterations to perform while
priming the cipher algorithm, the fourth is an array of characters representing the passphrase, and the fifth is
the Base64-encoded ciphertext. Plain text is returned from the method, and it is not Base64 encoded.

For complete details on what algorithms are available for use in the first argument, review Chapter 1,
Sections 1.4 through 1.6.

The sample code provided with the PBCrypto solution demonstrating this method can be found in the
w_pbe_encryption.cb_decrypt.clicked() method. The following example uses this code:

n_cst_cryptography lnv_crypto
PBCrypto pbcrypto

//The salt and iterations must be the same used in the encryption.
//Salt and iterations are not considered sensitive and can be
//shared using open, unsecured channels.

 6

long salt[] = { 23, 197, 85, 82, 13, 56, 213, 197 }
long iterations = 1000

TRY
 IF lnv_crypto.of_getInstance(pbcrypto) AND

(Len(sle_passphrase.text) > 0) AND
(Len(sle_plaintext.text) > 0) THEN

 sle_decrypted.text =
pbcrypto.decryptCipherTextUsingPBE("PBEWithMD5AndDES,

salt,
iterations,
sle_passphrase.text,
sle_encrypted.text)

 ELSE
 MessageBox("Alert", "Enter a passphrase/message first!")
 END IF
CATCH (NoSuchAlgorithmException nsae)
 MessageBox("Alert", nsae.getMessage())
END TRY

It is important to check that the arguments to the method are not null and do not contain the empty string.

DecryptSecretKeyUsingRSAPrivateKey

 decryptsecretkeyusingrsaprivatekey (string string_1, string string_2) returns string
 throws nosuchalgorithmexception

The RSA asymmetric algorithms support encryption, albeit of a finite and relatively small amount of data.
The combination of symmetric and asymmetric encryption is demonstrated in Chapter 5, Section 5.4.6. The
technique is powerful because symmetric ciphers are much faster and can handle more data than asymmetric
ciphers. However, securely distributing the secret key of a symmetric cipher is a challenge. The architecture
in this example demonstrates how to use the best features of both types of ciphers.

The secret key is used to encrypt the large plain text block. Then the secret key is encrypted using the public
RSA key of the intended recipient. The cipher text and the encrypted secret key can then be distributed over
insecure channels, where the recipient uses a private key to decrypt the secret key, then uses the secret key to
decrypt the cipher text, revealing the original plain text of the message. The first argument is the Base64-
encoded secret key that was encrypted using the RSA public key. The second argument is the Base64-
encoded representation of the RSA private key. The result of the method is a Base64-encoded representation
of the secret key.

The sample code provided with the PBCrypto solution demonstrating this method can be found in the
w_symmetric_asymmetric_combo.cb_decrypt.clicked() method. The following example
uses this code:

n_cst_cryptography lnv_crypto
PBCrypto pbcrypto

TRY
 IF lnv_crypto.of_getInstance(pbcrypto) THEN
 sle_decrypted.text =

pbcrypto.decryptSecretKeyUsingRsaPrivateKey(sle_encrypted.text,
mle_private.text)

 END IF
CATCH (NoSuchAlgorithmException nsae)
 MessageBox("Alert", nsae.getMessage())
END TRY

 7

It is important to check that the arguments to the method are not null and do not contain the empty string.
This particular demo window provides specific controls that ensure the button cannot be clicked unless
values are present.

DumpBCProviderList

 dumpbcproviderlist (string engine) returns string

This is merely a utility method to help PowerBuilder developers search for and identify which algorithms
are available for a particular cryptographic engine. They can use it, for example, to check which message
digest algorithms or which symmetric cipher algorithms are available. For complete details on what
algorithms are available, review Chapter 1, Sections 1.4 through 1.6. The sole argument of the method is the
formal name of the cryptographic engine to inspect.

The sample code provided with the PBCrypto solution demonstrating this method can be found in the
w_dump_available_algorithms.ddlb_engine.selectionchanged() method. The
following example uses this code:

n_cst_cryptography lnv_crypto
PBCrypto pbcrypto

IF lnv_crypto.of_getInstance(pbcrypto) THEN
 mle_dump.text = pbcrypto.dumpBCProviderList(this.text)
END IF

Engine names are well-defined JCE entities. For additional coverage of what engines are available beyond
those documented in the JCE book, see the Java Cryptography Extension document located at
http://java.sun.com.

EncryptPlainTextUsingBlockCipher

 encryptplaintextusingblockcipher (string algorithm, string secretKey, string plainText) returns string
throws nosuchalgorithmexception

This method is directly related to the decryptCipherTextUsingBlockCipher() method covered earlier in this
paper. For chapter and sample information, please review that method. The first argument is the algorithm
name, the second is the Base64-encoded secret key, and the third is the plain text to be encrypted. Cipher
text is returned from the method, Base64 encoded.

The following example shows how to invoke this method:

n_cst_cryptography lnv_crypto
PBCrypto pbcrypto

TRY
 IF lnv_crypto.of_getInstance(pbcrypto) AND

(Len(sle_secretKey.text) > 0) THEN
 sle_encrypted.text =

pbcrypto.encryptPlainTextUsingBlockCipher("AES",
sle_secretKey.text,
sle_plaintext.text)

 ELSE
 MessageBox("Alert", "You must generate a secret key first!")
 END IF
CATCH (NoSuchAlgorithmException nsae)
 MessageBox("Alert", nsae.getMessage())
END TRY

 8

http://java.sun.com/

EncryptPlainTextUsingPBE

 encryptplaintextusingpbe (string algorithm, long salt[], long iters, character passphrase[], string plainText) returns string
 throws nosuchalgorithmexception

This method is directly related to the decryptCipherTextUsingPBE() method covered earlier in this paper.
For chapter and sample information, please review that method. The first argument is the name of the
algorithm, the second is a random set of salt values to prime the cipher algorithm, the third is the number of
iterations to perform while priming the cipher algorithm, the fourth is an array of characters representing the
passphrase, and the fifth is the plain text to encrypt. Cipher text is returned from the method, Base64
encoded.

The following example shows how to invoke this method:

n_cst_cryptography lnv_crypto
PBCrypto pbcrypto

long salt[] = { 23, 197, 85, 82, 13, 56, 213, 197 }
long iterations = 1000
//char password[] = { 'a', 'p', 'p', 'l', 'e', 'j', 'a', 'x'}

TRY
 IF lnv_crypto.of_getInstance(pbcrypto) AND

(Len(sle_passphrase.text) > 0) AND
(Len(sle_plaintext.text) > 0) THEN

 sle_encrypted.text =
pbcrypto.encryptPlainTextUsingPBE("PBEWithMD5AndDES",

salt,
iterations,
sle_passphrase.text,
sle_plaintext.text)

 ELSE
 MessageBox("Demo Alert", "Enter passphrase/message first!")
 END IF
CATCH (NoSuchAlgorithmException nsae)
 MessageBox("Alert", nsae.getMessage())
END TRY

EncryptSecretKeyUsingRSAPublicKey

 encryptsecretkeyusingrsapublickey (string string_1, string string_2) returns string
 throws nosuchalgorithmexception

This method is directly related to the decryptSecretKeyUsingRSAPrivateKey() method covered earlier in
this paper. For chapter and sample information, please review that method. The first argument is the Base64-
encoded representation of the secret key, the second is the RSA public key, also Base64 encoded. The result
of the method is a Base64-encoded representation of the encrypted secret key.

The following example shows how to invoke this method:

n_cst_cryptography lnv_crypto
PBCrypto pbcrypto

TRY
 IF lnv_crypto.of_getInstance(pbcrypto) THEN
 sle_encrypted.text =
pbcrypto.encryptSecretKeyUsingRsaPublicKey(sle_secretkey.text,
mle_public.text)

 9

 END IF
CATCH (NoSuchAlgorithmException nsae)
 MessageBox("Alert", nsae.getMessage())
END TRY

GenerateDigitalSignature

 generatedigitalsignature (string keyAlgorithm, string signatureAlgorithm, string privateKey, string document) returns string

Digital signatures are a powerful mechanism relying on the properties of asymmetric encryption and
message digesting to ensure that the text or body of a document has not been manipulated or changed in any
way during transmission from one person to another. One of the more popular misconceptions is that a
digital signature manipulates a document. In fact, a digital signature can be simplified and thought of as a
checksum of a document sent as a separate attachment to the original document. Thus, the original document
is never modified in any way when a digital signature is generated.

Asymmetric encryption is discussed throughout Chapter 3, and digital signatures are discussed in Chapter 4,
Sections 4.4 and 4.5. The first and second arguments contain the key and signature algorithms, respectively.
The third argument is the Base64-encoded representation of the RSA private key, and the fourth argument is
the plain text body of the document to be signed. The result is a Base64-encoded representation of the digital
signature for the document.

The sample code provided with the PBCrypto solution demonstrating this method can be found in the
w_digital_signature.cb_sign.clicked() method. The following example uses this code:

n_cst_cryptography lnv_crypto
PBCrypto pbcrypto

TRY
 IF lnv_crypto.of_getInstance(pbcrypto) THEN
 sle_signature.text =

pbcrypto.generateDigitalSignature("RSA",
"MD5withRSA",
mle_private.text,
mle_message.text)

 END IF
CATCH (NoSuchAlgorithmException nsae)
 MessageBox("Alert", nsae.getMessage())
END TRY

For complete details on what algorithms are available for use in the first and second arguments, review
Chapter 1, Sections 1.4 through 1.6.

GenerateMessageAuthenticationCode

 generatemessageauthenticationcode (string algorithm, string secretKey, string document) returns string

Message Authentication Codes (MAC) take the concept of a message digest one step further. During
transmission of a document and a message digest between two people, Alice and Bob, it is possible for a
third, Eve, to intercept both items, modify the document, and then modify the message digest to reflect the
new value. A MAC solves this problem by incorporating a secret key shared only between Alice and Bob,
adding the secret key into the message digest calculation. Thus, if Eve attempts to change either the
document or the message digest, without the secret key it will be impossible for her to succeed; Bob will see
that the document and/or message digest hash has been tampered with.

 10

Message Authentication Codes are covered in Chapter 4, Section 4.3. The first argument is the algorithm to
use, the second argument is a Base64-encoded secret key that is known to both the sender and receiver, and
the third argument is the plain text document. The result is a Base64-encoded message digest hash.

The sample code provided with the PBCrypto solution demonstrating this method can be found in the
w_generate_mac.cb_generate.clicked() method. The following example uses this code:

n_cst_cryptography lnv_crypto
PBCrypto pbcrypto
String ls_result

IF lnv_crypto.of_getInstance(pbcrypto) AND (Len(sle_secretKey.text) > 0)
THEN
 ls_result =

pbcrypto.generateMessageAuthenticationCode("HMACMD5",
sle_secretKey.text,
sle_hashcode.text)

ELSE
 MessageBox("Alert", "You must generate a secret key first!")
END IF

For complete details on what algorithms are available for use in the first and second arguments, review
Chapter 1, Sections 1.4 through 1.6.

GenerateMessageDigest

 generatemessagedigest (string algorithm, string document) returns string

Message digests help in determining whether a document has changed over time. By definition, changing a
single bit of a document should result in a radically different message digest value. The two prominent
message digest algorithms in use are MD-5 and SHA-1. Message digests are covered in depth in Chapter 4.
The first argument is the algorithm to use, and the second argument is the plain text document. The result is
a Base64-encoded message digest hash.

The sample code provided with the PBCrypto solution demonstrating this method can be found in the
w_generate_message_digest.cb_generate.clicked() method. The following example uses
this code:

n_cst_cryptography lnv_crypto
PBCrypto pbcrypto
String ls_result

IF lnv_crypto.of_getInstance(pbcrypto) THEN
 ls_result = pbcrypto.generateMessageDigest("SHA-1",

sle_hashcode.text)
END IF

For complete details on what algorithms are available for use in the first and second arguments, review
Chapter 1, Sections 1.4 through 1.6.

GenerateSecretKey

 generatesecretkey (string algorithm) returns string
 throws nosuchalgorithmexception

The safest way to generate a symmetric key is to have a cryptographically secure pseudorandom number
generator build a key. This method relies on the JCE KeyGenerator engine to create a secure secret key

 11

that can be used in a symmetric block cipher. Secret key generation is discussed in Chapter 2, Sections 2.1
through 2.4.

The sample code provided with the PBCrypto solution demonstrating this method can be found in the
w_symmetric_encryption.cb_secretkey.clicked() method. The following example uses
this code:

n_cst_cryptography lnv_crypto
PBCrypto pbcrypto

TRY
 IF lnv_crypto.of_getInstance(pbcrypto) THEN
 sle_secretkey.text = pbcrypto.generateSecretKey("HMACMD5")
 END IF
CATCH (NoSuchAlgorithmException nsae)
 MessageBox("Alert", nsae.getMessage())
END TRY

For complete details on what algorithms are available for use in the first argument, review Chapter 1,
Sections 1.4 through 1.6.

VerifySignature

 verifysignature (string keyAlgorithm, string sigAlgorithm, string pubKey, string document, string signature) returns Boolean

This method is directly related to the generateDigitalSignature() method covered earlier in this
paper. For chapter and sample information, please review that method. The first and second arguments
contain the key and signature algorithms, respectively. The third argument is the Base64-encoded
representation of the RSA public key, the fourth argument is the plain text body of the document that is to be
signed, and the fifth argument is the Base64-encoded digital signature to be verified. The result is a Boolean,
true if the document has been successfully verified and should be considered valid.

The following example shows how to invoke this method:

n_cst_cryptography lnv_crypto
PBCrypto pbcrypto
boolean lb_valid

TRY
 IF lnv_crypto.of_getInstance(pbcrypto) THEN
 lb_valid =

pbcrypto.verifySignature("RSA",
"MD5withRSA",
mle_public.text,
mle_message.text,
sle_signature.text)

 MessageBox("Signature Verification Results", lb_valid)
 END IF
CATCH (NoSuchAlgorithmException nsae)
 MessageBox("Alert", nsae.getMessage())
END TRY

When verifying a digital signature, it is imperative that you use the same key and signature algorithms that
generated the digital signature value passed in the fifth argument.

 12

Conclusion

Cryptography is a topic that cannot be covered adequately in a single white paper. In combination, the demo
application, this white paper, the book that is referenced throughout, Java Cryptography Extensions:
Practical Guide for Programmers, and the Java Cryptography Extensions create a complete package of
information that should empower developers to build complex and robust cryptographic solutions into their
PowerBuilder applications. Remember: Be safe out there!

 13

Sybase, Inc.
Worldwide Headquarters
One Sybase Drive
Dublin, CA 94568-7902 USA
Tel: +800 8 SYBASE
www.sybase.com

Copyright © 2004 Sybase, Inc. All rights reserved. Unpublished rights reserved under U.S. copyright laws. Sybase and the Sybase logo are
trademarks of Sybase, Inc. All other trademarks are property of their respective owners. ® indicates registration in the United States.
Specifications are subject to change without notice. Printed in the U.S.A.

 14

	Table of Contents
	Overview
	Architecture of the PBCrypto Non-Visual Object
	Mapping JCE Exceptions into PowerBuilder Exceptions
	Obtaining an Instance of the PBCrypto Proxy Object

	PBCrypto Proxy API
	CreateRSAKeyPair
	DecryptCipherTextUsingBlockCipher
	DecryptCipherTextUsingPBE
	DecryptSecretKeyUsingRSAPrivateKey
	DumpBCProviderList
	EncryptPlainTextUsingBlockCipher
	EncryptPlainTextUsingPBE
	EncryptSecretKeyUsingRSAPublicKey
	GenerateDigitalSignature
	GenerateMessageAuthenticationCode
	GenerateMessageDigest
	GenerateSecretKey

	VerifySignature
	Conclusion

